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Abstract. The definition of bipolar multiplicative metric space is in-
troduced in this article, and in this space some properties are derived.
Multiplicative contractions for covariant and contravariant maps are de-
fined and fixed points are obtained. Also, some fixed point results of
covariant and contravariant maps satisfying multiplicative contraction
conditions are proved for bipolar multiplicative metric spaces. More-
over, Banach contraction principle and Kannan fixed point theorem are
generalized.
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1. Introduction
A. E. Bashirov et al introduced the notion of multiplicative metric spaces

in [3]. Topological properties of multiplicative metric spaces were derived
and fixed point results of multiplicative contraction mappings were proved
by M. Ozavsar, and A. C. Cevikel in [13]. There are many articles appeared
for fixed point theory in multiplicative metric spaces, see [1, 2, 4, 5, 7].

Definition 1.1. [3] Let S be a non empty set. A multiplicative metric is
a mapping d : S × S → [1,∞) satisfying the following axioms.

(i) d(s, t) = 1 if and only if s = t in S,
(ii) d(s, t) = d(t, s), ∀ s, t ∈ S,
(iii) d(s, t) ≤ d(s, r)d(r, t), ∀ s, t, r ∈ S.

The pair (S, d) is called a multiplicative metric space.

The notion of bipolar metric space has introduced by A. Mutlu and U.
Gurdal [11], giving a new definition of distance measurement between the
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members of two separate sets. Bipolar metric space is a metric space gen-
eralization. Many articles are appearing for fixed point theory in bipolar
metric spaces, see for example [8, 9, 12, 14] and the references therein.

Definition 1.2. [11] Let S and T be two non empty sets. A bipolar metric
is a mapping D : S × T → [0,∞) satisfying the following axioms.

(I) D(s, t) = 0 ⇒ s = t, whenever (s, t) ∈ S × T ,
(II) s = t ⇒ D(s, t) = 0, whenever (s, t) ∈ S × T ,

(III) D(s, t) = D(t, s), ∀ s, t ∈ S ∩ T ,
(IV) D(s1, t2) ≤ D(s1, t1)+D(s2, t1)+D(s2, t2), ∀ s1, s2 ∈ S, and t1, t2 ∈

T .
The triple (S, T,D) is called a bipolar metric space.

Proposition 1.3. [11] Let (S, d) be a metric space. Then (S, d) is complete
if and only if the corresponding bipolar metric space (S, S, d) is complete.

In this paper, by extending the domain of multiplicative metric to a
Cartesian product of two non-empty sets, we present a new definition of
bipolar multiplicative metric space that generalizes the notion of multiplica-
tive metric space. We derive some properties of bipolar multiplicative metric
spaces. Also, we prove some fixed point results of covariant and contravari-
ant maps satisfying various types of multiplicative contraction conditions
in a bipolar multiplicative metric space. We shall also convert fixed point
results from bipolar multiplicative metric spaces to bipolar metric spaces
through exponential transformation. Moreover, we generalize the Banach
contraction principle (see [10]), and Kannan fixed point result (see [6]).

2. Bipolar multiplicative metric spaces
Definition 2.1. Let S and T be two non empty sets. A bipolar multi-
plicative metric is a mapping d : S × T → [1,∞) satisfying the following
conditions.

(I) d(s, t) = 1 ⇒ s = t , whenever (s, t) ∈ S × T ,
(II) s = t ⇒ d(s, t) = 1, whenever (s, t) ∈ S × T ,

(III) d(s, t) = d(t, s), ∀ s, t ∈ S ∩ T ,
(IV) d(s1, t2) ≤ d(s1, t1)d(s2, t1)d(s2, t2), ∀ s1, s2 ∈ S, and t1, t2 ∈ T .

The triple (S, T, d) is called a bipolar multiplicative metric space(or, BMMS).

Remark 2.2. Let (S, T, d) be a BMMS. If S∩T = ∅, then (S, T, d) is called
disjoint. The space (S, T, d) is said to be a joint if S ∩ T ̸= ∅. The sets T
and S are called right pole and left pole of (S, T, d), respectively.

Example 2.3. Let S = (1,∞), T = (0, 1]. Define d : S × T → [0,∞) as
d(s, t) = | s2

t2
|∗, whenever (s, t) ∈ S × T , where |.|∗ : R+ → R+ is defined on

a set of positive real numbers R+ as follows: |z| = z if z ≥ 1 and |z| = 1
z if

z < 1. Then (S, T, d) is a disjoint BMMS.
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Remark 2.4. Let (S, d) be a multiplicative metric space, then (S, S, d) is
a BMMS. Conversely, if (S, T, d) is a BMMS such that S = T , then (S, d) is
a multiplicative metric space.
Definition 2.5. The opposite of a BMMS (S, T, d) is defined as the BMMS
(T, S, d), where the function d : T ×S → [1,∞) is defined as d(t, s) = d(s, t).
Definition 2.6. Let (S, T, d) be a BMMS. Where points of the sets T, S,
and S ∩ T are called right, left, and central points respectively. A sequence
that contains only right(or left, or central) points is called a right (or left,
or central) sequence in (S, T, d).
Definition 2.7. Let (S, T, d) be a BMMS. A left sequence (sn)

∞
n=1 mul-

tiplicative converges to a right point t(or (sn)
∞
n=1 → t) if and only if for

every ϵ > 1, there exists an integer n0 ∈ N such that d(sn, t) < ϵ, ∀ n ≥ n0.
Also a right sequence (tn)

∞
n=1 multiplicative converges to a left point s (or

(tn)
∞
n=1 → s) if and only if for every ϵ > 1, there exists an integer n0 ∈ N

such that d(s, tn) < ϵ, ∀ n ≥ n0. When it is given (kn)
∞
n=1 → l for a BMMS

(S, T, d) without precise data about the sequence, this means that either
(kn)

∞
n=1 is a right sequence and l is a left point, or (kn)∞n=1 is a left sequence

and l is a right point.
Lemma 2.8. Let (S, T, d) be a BMMS. Then a left sequence (sn)

∞
n=1 multi-

plicative converges to a right point t if and only if d(sn, t) → 1 in (R+, |.|∗),
and also a right sequence (tn)

∞
n=1 multiplicative converges to a left point s if

and only if d(s, tn) → 1 in (R+, |.|∗).
Proof. Let (sn)

∞
n=1 be a left sequence, and (sn)

∞
n=1 → t ∈ T . For every

ϵ > 1, there exists an integer n0 ∈ N such that, for all n ≥ n0, d(sn, t) < ϵ.
Hence

1 ≤ d(sn, t) < ϵ, ∀ n ≥ n0.

Since |d(sn, t)|∗ < ϵ, ∀ n ≥ n0, then d(sn, t) → 1 as n → ∞ in (R+, |.|∗).
The converse is also true. Obviously, a right sequence (tn)

∞
n=1 multiplicative

converges to a left point s if and only if d(s, tn) → 1 in (R+, |.|∗) and this
complete the proof. □
Lemma 2.9. Let (S, T, d) be a BMMS. If a central point is a multiplicative
limit of a sequence, then it is the unique multiplicative limit of the sequence.
Proof. Let (sn)∞n=1 be a left sequence, (sn)∞n=1 → s ∈ S ∩T , and (sn)

∞
n=1 →

t ∈ T . For every ϵ > 1, there exists an integer n0 ∈ N such that, for all
n ≥ n0, we have d(sn, s) <

√
ϵ, and d(sn, t) <

√
ϵ, and then

1 ≤ d(s, t) ≤ d(s, s)d(sn, s)d(sn, t) < 1.
√
ϵ.
√
ϵ = ϵ.

Since ϵ > 1 is arbitrary, we have d(s, t) = 1 which implies s = t. □
Lemma 2.10. Let (S, T, d) be a BMMS. If a left sequence (sn)

∞
n=1 multi-

plicative converges to t and a right sequence (tn)
∞
n=1 multiplicative converges

to s, then d(sn, tn) → d(s, t) as n → ∞.
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Proof. Let (sn)
∞
n=1 → t ∈ T , and (tn)

∞
n=1 → s ∈ S. For every ϵ > 1, there

exists an integer n0 ∈ N such that, for all n ≥ n0, we have d(sn, t) <
√
ϵ,

and d(s, tn) <
√
ϵ, then

d(s, t) ≤ d(s, tn)d(sn, tn)d(sn, t)

implies
d(s, t)

d(sn, tn)
≤ d(s, tn)d(sn, t),

and also

d(sn, tn) ≤ d(sn, t)d(s, t)d(s, tn)

implies
d(sn, tn)

d(s, t)
≤ d(s, tn)d(sn, t).

By the definition of |.|∗,

|d(sn, tn)
d(s, t)

|∗ ≤ d(s, tn)d(sn, t) < ϵ, ∀n ≥ n0,

and hence d(sn, tn) → d(s, t) as n → ∞ in (R+, |.|∗). □

Definition 2.11. Let (S1, T1) and (S2, T2) be two bipolar multiplicative
metric spaces(or,BMMSs), and f : S1 ∪ T1 → S2 ∪ T2.

(i) If f(S1) ⊆ S2 and f(T1) ⊆ T2, then f is called a covariant map from
(S1, T1) to (S2, T2), and we write f : (S1, T1) ⇒ (S2, T2).

(ii) If f(S1) ⊆ T2 and f(T1) ⊆ S2, then f is called a contravariant map
from (S1, T1) to (S2, T2), and we write f : (S1, T1) ⇄ (S2, T2).

Remark 2.12. Suppose d1, and d2 be two bipolar multiplicative met-
rics on (S1, T1) and (S2, T2) respectively. We can also use the symbols
f : (S1, T1, d1) ⇒ (S2, T2, d2) and f : (S1, T1, d1) ⇄ (S2, T2, d2) in the place
of f : (S1, T1) ⇒ (S2, T2) and f : (S1, T1) ⇄ (S2, T2).

Definition 2.13. Let (S1, T1, d1) and (S2, T2, d2) be two BMMSs.
(i) A map f : (S1, T1, d1) ⇒ (S2, T2, d2) is called left multiplicative

continuous at a point s0 ∈ S1, if for every ϵ > 1, there exists δ > 1
such that, the condition d1(s0, t) < δ implies that d2(f(s0), f(t)) < ϵ,
when t ∈ T1.

(ii) A map f : (S1, T1, d1) ⇒ (S2, T2, d2) is called right multiplicative
continuous at a point t0 ∈ T1, if for every ϵ > 1, there exists δ > 1
such that, the condition d1(s, t0) < δ implies that d2(f(s), f(t0)) < ϵ,
when s ∈ S1.

(iii) A covariant map f : (S1, T1, d1) ⇒ (S2, T2, d2) is called multiplicative
continuous if it is left multiplicative continuous at each point s ∈ S1,
and right multiplicative continuous at each point t ∈ T1.
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(iv) A contravariant map f : (S1, T1, d1) ⇄ (S2, T2, d2) is multiplicative
continuous if and only if it is multiplicative continuous as a covariant
map f : (S1, T1, d1) ⇒ (T2, S2, d2).

Remark 2.14. From the previous definition we have that a covariant or con-
travariant map f from (S1, T1, d1) to (S2, T2, d2) is multiplicative continuous
if and only if a sequence (kn)

∞
n=1 → l in (S1, T1, d1) implies (f(kn))

∞
n=1 →

f(l) in (S2, T2, d2)

Definition 2.15. Let (S, T, d) be a BMMS.
(i) A sequence (sn, tn) on the set S×T is called a bisequence on (S, T, d).
(ii) If both (sn)

∞
n=1 and (tn)

∞
n=1 multiplicative converges, then the bise-

quence (sn, tn) is called multiplicative convergent. If both (sn)
∞
n=1

and (tn)
∞
n=1 multiplicative converges to a same point s ∈ S∩T , then

the bisequence is called multiplicative biconvergent.
(iii) A bisequence (sn, tn) on (S, T, d) is called a multiplicative Cauchy

bisequence, if for each ϵ > 1, there is an n0 ∈ N such that d(sn, tm) <
ϵ ∀ n,m ≥ n0.

Lemma 2.16. Let (S, T, d) be a BMMS. Then (sn, tn) is a multiplicative
Cauchy bisequence if and only if d(sn, tm) → 1 as n,m → ∞.

Proof. Let (sn, tn) be a multiplicative Cauchy bisequence. For every ϵ > 1,
there exists an integer n0 ∈ N such that for all n,m ≥ n0 we have 1 ≤
d(sn, tm) < ϵ so that |d(sn, tm)|∗ < ϵ, for all n,m ≥ n0. Thus d(sn, tm) → 1
as n,m → ∞ in (R+, |.|∗). The converse is also true. □
Proposition 2.17. Let (S, T, d) be a BMMS. Then every multiplicative
biconvergent bisequence is a multiplicative Cauchy bisequence.

Proof. Let (sn, tn) be a bisequence, which is multiplicative biconvergent to
a point s ∈ S ∩T . For every ϵ > 1, there exists an integer n0 ∈ N such that
for every n ≥ n0, d(sn, s) <

√
ϵ, and for every m ≥ n0, d(s, tm) <

√
ϵ. Then

we have
d(sn, tm) ≤ d(sn, s)d(s, s)d(s, tm) <

√
ϵ.1.

√
ϵ = ϵ, ∀n,m ≥ n0.

So (sn, tn) is a multiplicative Cauchy bisequence. □
Proposition 2.18. Let (S, T, d) be a BMMS. Then every multiplicative
convergent multiplicative Cauchy bisequence is multiplicative biconvergent.

Proof. Let (sn, tn) be a multiplicative Cauchy bisequence such that (sn)∞n=1

multiplicative convergent to t in T and (tn)
∞
n=1 multiplicative convergent to s

in S. For every ϵ > 1, there exists an integer n0 ∈ N such that d(sn, t) < 3
√
ϵ,

d(s, tn) < 3
√
ϵ, for all n ≥ n0, and d(sn, tm) < 3

√
ϵ, for all n,m ≥ n0. Then

1 ≤ d(s, t) ≤ d(s, tm)d(sn, tm)d(sn, t) <
3
√
ϵ 3
√
ϵ 3
√
ϵ = ϵ,∀n,m ≥ n0.

Therefore d(s, t) = 1 and so that s = t. Then (sn, tn) is multiplicative
biconvergent. □
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Definition 2.19. A BMMS (S, T, d) is called complete, if every multi-
plicative Cauchy bisequence is multiplicative convergent, or equivalently,
multiplicative biconvergent.

Definition 2.20. Let (S1, T1, d1) and (S2, T2, d2) be two BMMSs. A covari-
ant map f : (S1, T1, d1) ⇒ (S2, T2, d2) such that d(f(s), f(t)) ≤ (d(s, t))λ, for
all s ∈ S1, t ∈ T1, where λ ∈ (0, 1), or, a contravariant map f : (S1, T1, d1) ⇄
(S2, T2, d2) such that d(f(t), f(s)) ≤ (d(s, t))λ, ∀ s ∈ S1, t ∈ T1, for some
λ ∈ (0, 1), is called multiplicative contraction.

3. main results
Theorem 3.1. Let (S, T, d) be a complete BMMS. If a covariant map
f : (S, T, d) ⇒ (S, T, d) satisfies d(f(s), f(t)) ≤ (d(s, t))λ, whenever (s, t) ∈
S×T and λ ∈ (0, 1), then the function f : S ∪T → S ∪T has a unique fixed
point(UFP).

Proof. Let s0 ∈ S, t0 ∈ T and sn+1 = f(sn) and tn+1 = f(tn), for all
n ∈ N . Then (sn, tn) is a bisequence on (S, T, d). By using the contraction
condition:

d(sn, tn) = d(f(sn−1), f(tn−1))

≤ (d(sn−1, tn−1))
λ ≤ ... ≤ (d(s0, t0))

λn

d(sn, tn+1) = d(f(sn−1), f(tn))

≤ (d(sn−1, tn))
λ ≤ ... ≤ (d(s0, t1))

λn
.

For every n, q ∈ N and hence,

d(sn+q, tn) ≤ d(sn+q, tn+1)d(sn, tn+1)d(sn, tn)

≤ d(sn+q, tn+1)(d(s0, t1))
λn
(d(s0, t0))

λn

= d(sn+q, tn+1)M
λn
, (M = d(s0, t1)d(s0, t0))

≤ d(sn+q, tn+2)d(sn+1, tn+2)d(sn+1, tn+1)M
λn

≤ d(sn+q, tn+2)M
(λn+1+λn)

≤ ...

≤ d(sn+q, tn+q)M
(λn+q−1+...+λn+1+λn)

≤ M (λn+q+...+λn+1+λn)

≤ M
λn

∞∑
z=0

λz

= M
λn

1−λ = Kn,

where Kn = M
λn

1−λ . Similarly d(sn, tn+q) ≤ Kn, for all n, q ∈ N .
Let ϵ > 1. Since λ ∈ (0, 1), there exists n0 ∈ N such that Kn0 = M

λn0
1−λ <
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3
√
ϵ. Therefore,

d(sn, tm) ≤ d(sn, tn0)d(sn0 , tn0)d(sn0 , tm)

≤ Kn0
3 < ϵ, ∀n ≥ n0 and ∀m ≥ n0.

So (sn, tn) is a multiplicative Cauchy bisequence. Since (S, T, d) is complete,
then (sn, tn) multiplicative converges, and multiplicative biconverges to a
point k ∈ S ∩ T . Also, f(tn) = tn+1 → k ∈ S ∩ T as n → ∞. For all n ∈ N

d(k, f(k)) ≤ d(k, f(tn))d(f(tn), f(tn))d(f(tn), f(k))

≤ d(k, tn+1)(d(tn, tn))
λ(d(tn, k))

λ

≤ d(k, tn+1)(d(t0, t0))
λn+1

(d(tn, k))
λ.

By taking the limit in the above inequality, we get d(k, f(k)) ≤ 1. Hence,
d(k, f(k)) = 1 so that f(k) = k. Therefore, k is a fixed point of f .
If l is another fixed point of f , then f(l) = l implies l ∈ S ∩ T , and
d(k, l) = d(f(k), f(l)) ≤ (d(k, l))λ ≤ ... ≤ (d(k, l))λ

n
, for every n = 1, 2, 3, ....

Therefore d(k, l) = 1 so that k = l, and hence f has a unique fixed point
and this completes the proof. □
Corollary 3.2. Let (S, T,D) be a complete bipolar metric space. If a
covariant map f : (S, T,D) ⇒ (S, T,D) satisfies D(f(s), f(t)) ≤ λD(s, t),
whenever (s, t) ∈ S×T , where λ ∈ (0, 1), then the function f : S∪T → S∪T
has a UFP.
Proof. Suppose d = expD. Then (S, T, d) is a complete BMMS. Also
d(f(s), f(t)) ≤ (d(s, t))λ, where (s, t) ∈ S×T and λ ∈ (0, 1). The proof now
follows from Theorem 3.1. □

The above corollary is Theorem 5.1 of [11]. Also, this Corollary generalizes
a Banach contraction principle (see [10]).
Theorem 3.3. Let (S, T, d) be a complete BMMS. If a contravariant map
f : (S, T, d) ⇄ (S, T, d) satisfies d(f(t), f(s)) ≤ (d(s, t))λ, whenever (s, t) ∈
S × T , where λ ∈ (0, 1) , then the function f : S ∪ T → S ∪ T has a UFP.
Proof. Let s0 ∈ S, t0 = f(s0) ∈ T , and s1 = f(t0), and let tn = f(sn)
and sn+1 = f(tn), for all n ∈ N . Then (sn, tn) is a bisequence on (S, T, d).
Hence,

d(sn, tn) = d(f(tn−1), f(sn))

≤ (d(sn, tn−1))
λ

= (d(f(tn−1), f(sn−1)))
λ

≤ (d(sn−1, tn−1))
λ2 ≤ ... ≤ (d(s0, t0))

λ2n
= K1−λ

n ≤ Kn,

(Kn = d(s0, t0)
λ2n

1−λ ). So
d(sn+1, tn) = d(f(tn), f(sn))

≤ (d(sn, tn))
λ ≤ (d(s0, t0))

λ2n+1
.
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For all n, q ∈ N , we have

d(sn+q, tn) ≤ d(sn+q, tn+1)d(sn+1, tn+1)d(sn+1, tn)

≤ d(sn+q, tn+1)(d(s0, t0))
λ2n+2+λ2n+1

≤ d(sn+q, tn+2)d(sn+2, tn+2)d(sn+2, tn+1)(d(s0, t0))
λ2n+2+λ2n+1

≤ d(sn+q, tn+2)(d(s0, t0))
λ2n+4+λ2n+3+λ2n+2+λ2n+1

≤ ...

≤ d(sn+q, tn+q−1)(d(s0, t0))
λ2n+2q−2+...+λ2n+1

≤ (d(s0, t0))
λ2n+2q−1+λ2n+2q−2+...+λ2n+1

≤ (d(s0, t0))
λ2n+1

∞∑
z=0

λz

= (d(s0, t0))
λ2n+1

1−λ

= Kn
λ < Kn, (Kn = d(s0, t0)

λ2n

1−λ ).

Similarly

d(sn, tn+q) ≤ Kn.

Let ϵ > 1. From 0 < λ < 1, there exists n0 ∈ N such that Kn0 =

d(s0, t0)
λ2n0+1

1−λ < 3
√
ϵ. Then,

d(sn, tm) = d(sn, tn0)d(sn0 , tn0)d(sn0 , tm)

≤ Kn0
3 < ϵ, ∀n ≥ n0 and ∀m ≥ n0.

So (sn, tn) is a multiplicative Cauchy bisequence. Since (S, T, d) is complete,
(sn, tn) multiplicative converges, and multiplicative biconverges to a point
k ∈ S ∩ T . Also, f(sn) = tn → k ∈ S ∩ T as n → ∞. Thus, for all n ∈ N ,

d(k, f(k)) ≤ d(k, f(sn))d(f(tn), f(sn))d(f(tn), f(k))

≤ d(k, tn)(d(sn, tn))
λ(d(k, tn))

λ

≤ d(k, tn)(d(s0, t0))
λ2n+1

(d(k, tn))
λ, ∀n.

So d(k, f(k)) ≤ 1, as n → ∞ in the previous inequality. Therefore d(k, f(k)) =
1 so that f(k) = k. Hence k is a fixed point.
If l is another fixed point of f , then f(l) = l, l ∈ S ∩ T , and

d(k, l) = d(f(k), f(l)) ≤ (d(k, l))λ ≤ ... ≤ (d(k, l))λ
n
, for every n = 1, 2, 3, ....

Therefore d(k, l) = 1 so that k = l. So f has a unique fixed point and this
completes the proof. □

Theorem 3.4. Let (S, T, d) be a complete BMMS. If a contravariant map f :
(S, T, d) ⇄ (S, T, d) satisfies d(f(t), f(s)) ≤ [d(s, f(s))d(f(t), t)]λ, whenever
(s, t) ∈ S × T , for some λ ∈ (0, 12), then the function f : S ∪ T → S ∪ T has
a UFP.
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Proof. Let s0 ∈ S, t0 = f(s0) ∈ T , and s1 = f(t0). Suppose, tn = f(sn)
and sn+1 = f(tn), for all n ∈ N . Then (sn, tn) is a bisequence on (S, T, d).
For all n ∈ N , from

d(sn, tn) = d(f(tn−1), f(sn))

≤ [d(sn, f(sn))d(f(tn−1), tn−1)]
λ

= [d(sn, tn)d(sn, tn−1)]
λ

we conclude that

d(sn, tn) ≤ [d(sn, tn−1)]
λ

1−λ ,

and

d(sn, tn−1) = d(f(tn−1), f(sn−1))

≤ [d(sn−1, f(sn−1))d(f(tn−1), tn−1)]
λ

≤ [d(sn−1, tn−1)d(sn, tn−1)]
λ

so that

d(sn, tn−1) ≤ [d(sn−1, tn−1)]
λ

1−λ .

Therefore, by putting α = λ
1−λ , we have

d(sn, tn) ≤ (d(s0, t0))
α2n

and

d(sn, tn−1) ≤ (d(s0, t0))
α2n−1

.

For every m,n ∈ N ,

d(sn, tm) ≤ d(sn, tn)d(sn+1, tn)d(sn+1, tm)

≤ (d(s0, t0))
α2n+α2n+1

d(sn+1, tm)

≤ ...

≤ (d(s0, t0))
α2n+α2n+1+...+α2m−1

d(sm, tm)

≤ (d(s0, t0))
α2n+α2n+1+...+α2m

, if m > n,

and similarly, if m < n, then

d(sn, tm) ≤ (d(s0, t0))
α2m+1+α2m+2+...+α2n+1

.

By α ∈ (0, 1), d(sn, tm) → 1, as n,m → ∞, we conclude that (sn, tn)
is a multiplicative Cauchy bisequence. Since (S, T, d) is complete, (sn, tn)
multiplicative converges, and multiplicative biconverges to a point k ∈ S∩T .
Hence, f(sn) = tn → k ∈ S ∩ T as n → ∞ implies d(f(k), f(sn)) →
d(f(k), k) as n → ∞, by using Lemma 2.10. Also by taking the limit from

d(f(k), f(sn)) ≤ [d(sn, f(sn))d(f(k), k)]
λ

= [d(sn, tn)d(f(k), k)]
λ,
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as n → ∞, we get d(f(k), k) ≤ (d(f(k), k))λ. Since 0 < λ < 1
2 , d(f(k), k) =

1, hence f(k) = k. Therefore k is a fixed point of f .
If l is another fixed point of f , then f(l) = l, l ∈ S ∩ T , and hence,

d(k, l) = d(f(k), f(l)) ≤ (d(k, fk)d(fl, l))λ = (d(k, k)d(l, l))λ

Therefore d(k, l) = 1 so that k = l. So f has a unique fixed point, and this
completes the proof. □
Corollary 3.5. Let (S, T,D) be a complete bipolar metric space. If a con-
travariant map f : (S, T,D) ⇄ (S, T,D) satisfies D(f(t), f(s)) ≤ λ[D(s, f(s))+
D(f(t), t)], whenever (s, t) ∈ S × T , and λ ∈ (0, 12), then the function
f : S ∪ T → S ∪ T has a UFP.
Proof. Suppose d = expD. Then (S, T, d) is a complete BMMS. Also
d(f(t), f(s)) ≤ [d(s, f(s))d(f(t), t)]λ, whenever (s, t) ∈ S×T , and λ ∈ (0, 12).
Now the proof follows from Theorem 3.5. □

The above corollary is Theorem 5.6 of [11]. Also, the above corollary
generalized the Kannan fixed point theorem [6].

Example 3.6. Let S = [1,∞) and T =
[
1
4 , 1

]
, and d(s, t) = | s2

t2
|∗, where

(s, t) ∈ S × T . Then (S, T, d) is a complete BMMS. Define a covariant map
f : (S, T, d) ⇒ (S, T, d) by f(u) = u

1
4 , for all u ∈ S ∪ T . Then,

d(f(s), f(t)) = d(s
1
4 , t

1
4 ) = (|s

1
2

t
1
2

|)

= (|s
2

t2
|)

1
4

= (d(s, t))
1
4

≤ (d(s, t))λ,∀λ ∈
[1
4
, 1
)
, ∀ (s, t) ∈ (S, T ).

By Theorem 3.1, f has a UFP 1.

4. Conclusions
Almost all fixed point results can be converted from bipolar multiplicative

metric spaces to bipolar metric spaces through exponential transformation,
as it has been illustrated in this article. Also, all fixed point theorems
in bipolar metric spaces can be regarded as generalizations of fixed point
theorems in metric spaces. Therefore, studies of fixed point outcomes in
bipolar multiplicative metric spaces are significant.
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